Bose-Einstein Condensate in Artificial Gauge Field

SHIZHONG ZHANG

Department of Physics The Ohio State University

July 31, 2010

GENERAL CONSIDERATIONS

Goal: Create spatially varying "<u>internal eigenstates</u>" (adiabatic states) of the Hamiltonian. Gauge fields appear in the basis of these adiabatic states.

Method: Using laser (classical field) (+ magnetic field) induced adiabatic states.

1. Length scales: laser wave length λ ; BEC coherence length ξ ; inter-particle spacing d2. Typical single particle energy scale: $\frac{\hbar^2 k^2}{2M} \sim E_R$ 3. Internal degree of freedom

Adiabatic Conditions

E_R ϵ_3 ϵ_2 ϵ_1 ϵ_2 ϵ_1 $\lambda/2$

ADIABATIC CONDITIONS:

- 1. Single particle energy states $\epsilon_i \ll E_R$;
- 2. Many-body energy scales $\ll E_R$; (Fermi energy; $\hbar^2/2M\xi^2$,etc.)

$$\begin{array}{l} \underline{\mathrm{Def:}} \ \Delta = \min_{x} |\epsilon_{3} - \epsilon_{2}| \\ \hline \mathbf{3.} \ \frac{d \ln \epsilon(x)}{dt} \ll \Delta \Rightarrow \\ v \ll \Delta \left(\frac{\partial \ln \epsilon(x)}{\partial x}\right)^{-1} \sim \frac{\Delta}{|\epsilon|} \frac{1}{\lambda} \\ \mathrm{Boson:} \ v \sim \hbar/\xi \Rightarrow \xi \gg \frac{|\epsilon|}{\Delta} \lambda \\ \mathrm{Fermion:} \\ v \sim \hbar/d \Rightarrow d \gg \frac{|\epsilon|}{\Delta} \lambda \end{array}$$

THE NIST SCHEME 1

SINGLE PARTICLE HAMILTONIAN:

$$h(t) = \frac{\mathbf{p}^2}{2M} + W(t) \tag{1}$$

$$W(t) = -\hbar\Omega_y F_y + \hbar\lambda F_y^2 \qquad (2)$$

$$- \frac{\hbar\Omega_R}{2} \left[e^{i(qx-\omega t)} F_+ + h.c. \right]$$

$$F_{+} \equiv F_{z} + iF_{x} \qquad (3)$$

$$F_{-} \equiv F_{z} - iF_{x} \qquad (4)$$

$$F_{-} \equiv F_z - iF_x \tag{4}$$

$$\hbar\Omega_y = \hbar\Omega_o + Gy \tag{5}$$

THE NIST SCHEME 2

CONDITION FOR NON-ABELIAN FIELDS:

<u>Step 1</u>: Go to rotating frame:

$$W(t) = e^{-iqxF_y} \left(-\overline{\Omega}_y F_y + \lambda F_y^2 - \Omega_R F_z \right) e^{iqxF_y}$$
 (6)

$$\hbar \overline{\Omega}_y = \hbar \Omega_o - \omega + Gy \tag{7}$$

<u>STEP 2</u>: Setting G = 0. Choose $\omega = \lambda + \Omega_o$. Then the states m = 0 and m = -1 are degenerate and the state m = -1 is of energy 2λ higher.

Provided $\lambda \gg \Omega_R$, E_R , can neglect coupling to m=-1 state \Rightarrow effectively two internal states.

THE NIST SCHEME 3

Step 3: Transform to spatially dependent basis.

 $\hat{\psi}_m^{\dagger}$ — create state in the lab frame $\hat{\phi}_m^{\dagger}$ — create state in the rotating frame

$$\hat{\psi}_m^{\dagger} = \left(e^{iqxF_y}\right)_{mn} \hat{\phi}_n^{\dagger} \tag{8}$$

THE SINGLE PARTICLE HAMILTONIAN:

$$H_{mn} = \frac{\hbar^2}{2M} \begin{bmatrix} \overline{\nabla} + \hat{\mathbf{x}}q \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}^2 + \hbar \begin{pmatrix} 0 & \frac{\Omega_R}{\sqrt{2}} \\ \frac{\Omega_R}{\sqrt{2}} & 0 \end{pmatrix}. \tag{9}$$

The full Hamiltonian (including chemical potential term):

$$\hat{\mathcal{K}} = \int \left[\hat{\phi}_m^{\dagger} H_{mn} \hat{\phi}_n + \frac{1}{2} \hat{n}_m g_{mn} \hat{n}_n + (V - \mu) \hat{n} \right]$$
 (10)

 g_{mn} — interacting matrix elements in the rotating basis.

Properties of H_{mn} 1

(1). If χ_m is the solution of the Hamiltonian H_{mn} with energy E, then

$$\chi_n = e^{i\gamma} e^{-iqx} \left(\tau_1\right)_{nm} \chi_m^* \tag{11}$$

is also an eigenstate, with the same energy $E.\ \gamma$ is an arbitrary phase factor.

factor. (2).
$$\chi_m^{(p)}(x) = e^{ipx} \widetilde{\chi}_m$$
, $\widetilde{\chi} \equiv \binom{u}{v}$, $\ell^2 \equiv \frac{M\Omega_R}{\sqrt{2}\hbar}$

$$\frac{\hbar^2}{M} \left(\frac{k^2 + Q^2}{2} + kQ\tau_2 + \ell^2 \tau_1 \right) \begin{pmatrix} u \\ v \end{pmatrix} = E_p \begin{pmatrix} u \\ v \end{pmatrix}, \tag{12}$$

$$E_{1(0)}(p) = \frac{\hbar^2}{M} \left(\frac{k^2 + Q^2}{2} + (-)\sqrt{(kQ)^2 + \ell^4} \right)$$
 (13)

$$Q = q/2; k = p + Q \tag{14}$$

Properties of H_{mn} 2

 $\underline{\mathrm{Def}}: \quad \frac{M\Omega_R}{\sqrt{2}\hbar Q^2} \equiv \sin\theta;$

The lowest energy states are degenerate @

$$k_{o} = Q\sqrt{1 - \frac{\ell^{4}}{Q^{4}}} = \frac{q}{2}\cos\theta;$$

$$E_{0}(p_{\pm}) = -\frac{m(\hbar\Omega_{R})^{2}}{\hbar^{2}q^{2}};$$

$$p_{\pm} = \pm k_{o} - q/2$$

$$\widetilde{\chi}^{(p_{+})} = \begin{pmatrix} i\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{pmatrix}, \ \widetilde{\chi}^{(p_{-})} = \begin{pmatrix} i\cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{pmatrix}. \tag{15}$$

Note: $\widetilde{\chi}^{(p_+)\dagger}\widetilde{\chi}^{(p_+)} = \sin\theta \neq 0$.

STRUCTURE OF THE CONDENSATE

The Gross-Pitaevskii ansatz can be written as:

$$\Phi_m(x) = A_+ \chi_m^{(p_+)}(x) + A_- \chi_m^{(p_-)}(x). \tag{16}$$

Our task is to fix A_+ and A_- , which in general are complex amplitudes.

 \Rightarrow minimize the GP energy functional $\hat{\mathcal{K}}$.

STRIPE STRUCTURE

In the region \mathbf{I} , (p_+, p_-) :

$$\Phi_{m} = \sqrt{\frac{\mu(\mathbf{r}) - E_{o}}{G_{o}}} \left[a_{+}^{o} e^{ip_{+}x} \begin{pmatrix} i\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{pmatrix} + e^{i\gamma} a_{-}^{o} e^{ip_{-}x} \begin{pmatrix} i\cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{pmatrix} \right] \quad (17)$$

$$\mu(\mathbf{r}) = \mu - V(\mathbf{r})$$
 (18)
$$\alpha = \frac{1}{4}\alpha_c, \beta = \frac{1}{4}\beta_c$$

Thank you!