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GENERAL CONSIDERATIONS

Goal: Create spatially varying “internal eigenstates” (adiabatic
states) of the Hamiltonian. Gauge fields appear in the basis of these
adiabatic states.

Method: Using laser (classical field) (+ magnetic field) induced
adiabatic states.

1. Length scales:

laser wave length \;
" BEC coherence length &;
inter-particle spacing d
2. Typical single particle
energy scale: % ~ Er
\ 3. Internal degree of

freedom



ADIABATIC

CONDITIONS

non-adiabatic States

Adiabatic States

Abelian non-abelian

ADIABATIC CONDITIONS:

1. Single particle energy
states ¢; < FER;

2. Many-body energy scales
< Epg; (Fermi energy;
h%/2M &2 etc.)
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Boson: v ~ A/ = £ > %A
Fermion:
v Bifd = d > KA



THE NIST SCHEME 1

SINGLE PARTICLE HAMILTONIAN:
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THE NIST SCHEME 2

CONDITION FOR NON-ABELIAN FIELDS:

STEP 1: Go to rotating frame:

W(t) = e " (—Q, F, + AF, — QpF.) e'** (6)
hQ, = hQ, —w + Gy (7
STEP 2: Setting G = 0. Choose w = A + ,. Then the states m =0
and m = —1 are degenerate and the state m = —1 is of energy 2\
higher.
m=—1
L .
\ Provided A > Qg, Fr, can
\ neglect coupling to m = —1
2\ Q0 ‘(\ZR state = effectively two
l PRLIAN internal states.
g Y
| < N




THE NIST SCHEME 3

STEP 3: Transform to spatially dependent basis.

1&}% — create state in the lab frame
®!, — create state in the rotating frame

it = (), 8 ®)
THE SINGLE PARTICLE HAMILTONIAN:
w2 (v 10\ 0o T
Hpp = — |~ + % h vz, 9
2M{i+xq(0 oﬂ+ 2 0 ©)
The full Hamiltonian (including chemical potential term):
N 2 A 1, R A
K= ¢mHmn¢n + §nmgmnnn + (V - [L)TL (10)

gmn — interacting matrix elements in the rotating basis.



PROPERTIES OF H,,, 1

(1). If xym is the solution of the Hamiltonian H,,, with energy E, then
Xn = €77 (1), X (11)

is also an eigenstate, with the same energy E. « is an arbitrary phase
factor.

(2). X8 (@) = €7 Xom, X = (1), £2 = M8
2 2 2
L(k —;Q +kQT2+€2'rl><Z>Ep(g), (12)
2 2 2
Evo)(p) = % (k J;Q + (—)V(kQ)? +€4) (13)

Q=4q/2k=p+Q (14)



PROPERTIES OF H,,, 2

Def: %;252 = sin 6,
Ei(p) | The lowest energy states are
degenerate @
4
ke = Q 1—L=g0089;
Qt 2
2
EG)| g __m(hQg)"
. | 0(p:|:) thQ )
—ko ko kEp-f—g p+ = iko—q/Q
~(ps) _ z'singg ~(p_) _ icosag (15)
X5 cosg )’ X -\ sing )7

Note: YPH)T¥P+) = sing # 0.



STRUCTURE OF THE CONDENSATE

The Gross-Pitaevskii ansatz can be written as:
@, (x) = A xE () + A XE (@) (16)

Our task is to fix A and A_, which in general are complex
amplitudes. A
=- minimize the GP energy functional K.

B

Be II »+ a = (g10)/9;
B = (911 — 900)/9;
I . g = (9114 900)/2;
(Parp-) Qe @ o = 2 tanZ 6 -
© 24 tan?6 ’

—Be 111 »- B. = cosf(2—tan?0)




STRIPE STRUCTURE

In the region I, (py,p—):

... 0
_E ; 815
Y = R
m G, [+ cosg2
0

+ei7aaeiw< sz )] (17)

Sln§

pr) = p—V(r) (18)
o = *Oéc,ﬁ = iﬁc



Thank you!



