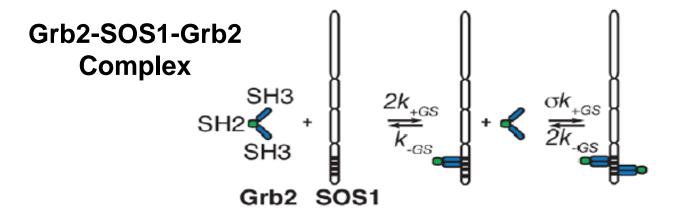
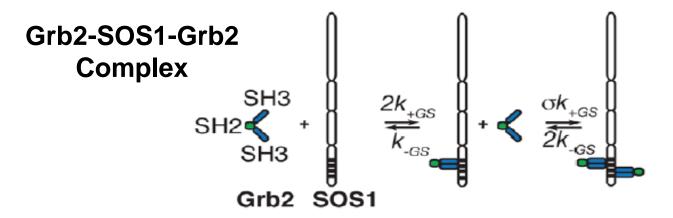

A Rule-based Model for LAT Phosphorylation and Aggregation

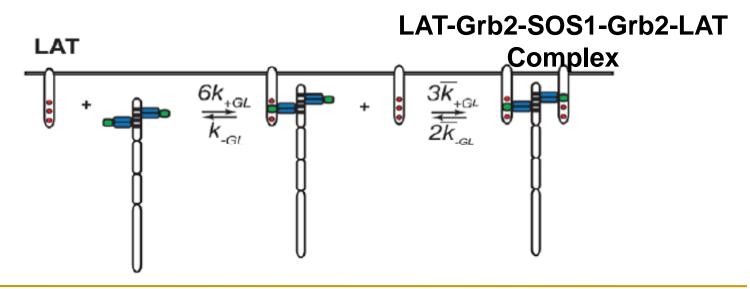
Thembi Mdluli, Diana Hermith, Xianfeng Ping

Cell Signaling Track (Q-bio 2) 6th Q-bio Summer School Santa Fe campus

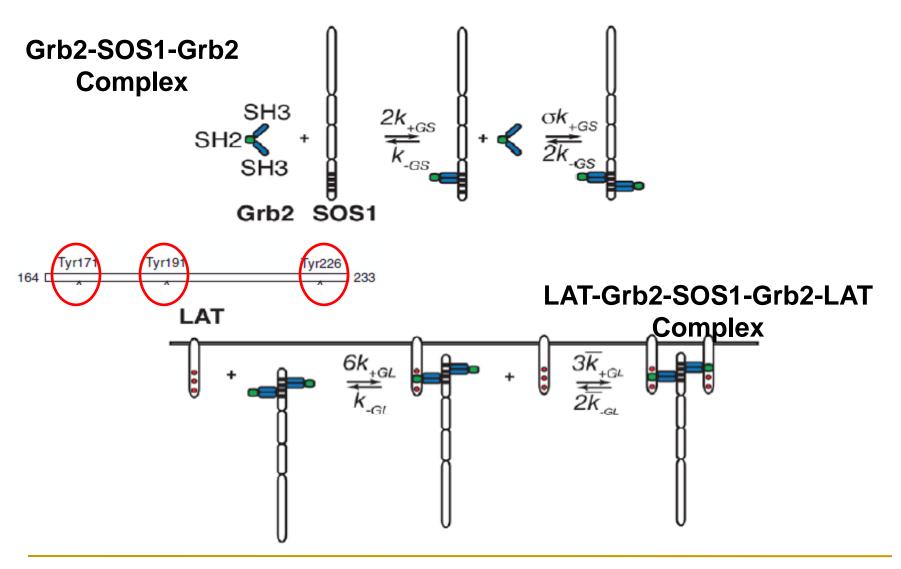

Introduction

Biological Scenario: LAT aggregation




- LAT: the linker protein for activation of T cells
- Our Approach
 - To use a rule-based approach to represent the aggregation process of the LAT molecules

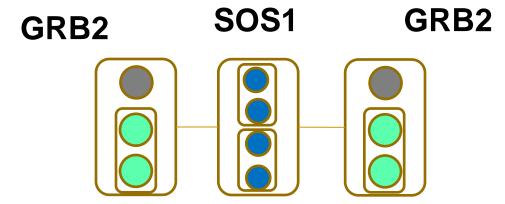
Interactions of LAT with Grb2 and SOS1



Interactions of LAT with Grb2 and SOS1

Interactions of LAT with Grb2 and SOS1

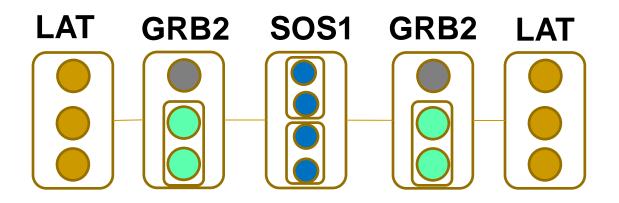
Rule-based Model for LAT


```
    begin reaction rules

 #PHOSPHORYLATION RULES
 #Encounter Complex
 LAT(E~0,A~0) <-> LAT(E~1,A~0) Ekp,Ekm
 LAT(E~1.A~1) -> LAT(E~0.A~0) Ekm
 #Binding Reactions
 LAT(E~1,A~0,Y~U) <-> LAT(E~1!1,A~0,Y~U!1) Ekf1,Ekb
 LAT(E~1,A~0,Y~P,Y~U,Y~U) <-> LAT(E~1!1,A~0,Y~P!1,Y~U,Y~U) Ekf2,Ekb
 LAT(E~1,A~0,Y~P,Y~P,Y~U) <-> LAT(E~1!1,A~0,Y~P,Y~P!1,Y~U) Ekf3,Ekb
 LAT(E~1,A~0,Y~P,Y~P,Y~P) <-> LAT(E~1!1,A~0,Y~P,Y~P,Y~P!1) Ekf4,Ekb
 #Catalysis + Enzyme Inactivation
 LAT(E~1!1,A~0,Y~U!1) -> LAT(E~1,A~1,Y~P,Y~U,Y~U) Ekc
 LAT(E~1!1,A~0,Y~P!1,Y~U,Y~U) -> LAT(E~1,A~1,Y~P,Y~P,Y~U) Ekc
 LAT(E~1!1,A~0,Y~P,Y~P!1,Y~U) -> LAT(E~1,A~1,Y~P,Y~P,Y~P) Ekc
 #Refactory Period
 LAT(E~1,A~1) -> LAT(E~1,A~0) Emu
```

Phosphorylation of LAT sites

Heterogeneous LAT mixture: monovalent, bivalent, and trivalent


Rule-based Model for LAT

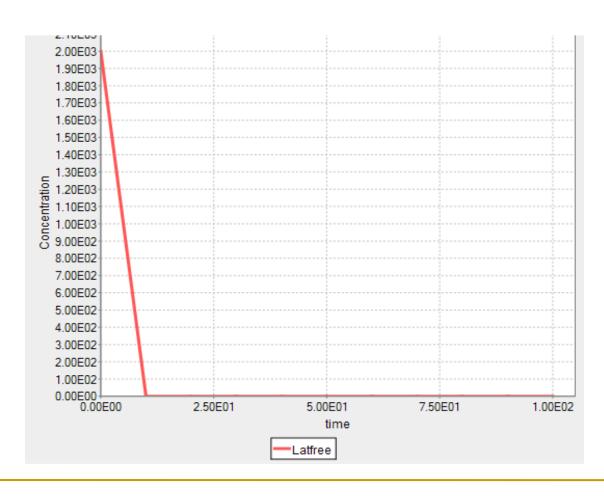
Binding of GRB2 and SOS1

```
# LAT AGGREGRATION RULES
     # 1a: Free GRB2 binds free SOS1
     GRB2(SH2,SH3) + SOS1(PRS,PRS) <-> GRB2(SH2,SH3!1).SOS1(PRS!1,PRS) kgsp, kgsm
89
90
     # 1b: Free GRB2 binds SOS1 bound to GRB2
91
     GRB2(SH2,SH3) + SOS1(PRS,PRS!1),GRB2(SH2,SH3!1) <-> GRB2(SH2,SH3!2),SOS1(PRS!2,PRS!1),GRB2(SH2,SH3!1) kxqsp, kxqsm
92
93
     # 1c: Membrane-associated GRB2 binds free SOS1
     GRB2(SH3,SH2!+)+SOS1(PRS,PRS) <-> GRB2(SH3!1,SH2!+),SOS1(PRS!1,PRS) kqsp,kqsm
95
96
97
     # 1d: Membrane-associated GRB2 binds SOS1 bounds to GRB2
98
     GRB2(SH3,SH2!+)+SOS1(PRS,PRS!1),GRB2(SH3!1,SH2) <-> GRB2(SH3!2,SH2!+),SOS1(PRS!2,PRS!1),GRB2(SH3!1,SH2) kxqsp,kxqsm
99
100
     # 1e: Free GRB2 binds membrane-associated SOS1
101
     GRB2(SH3,SH2)+SOS1(PRS,PRS!1).GRB2(SH3!1,SH2!+) <-> GRB2(SH3!2,SH2).SOS1(PRS!2,PRS!1).GRB2(SH3!1,SH2!+) kxqsp,kxqsm
102
103
     # 1f: Membrane-associated GRB2 binds membrane-associated SOS1
     GRB2(SH3,SH2!+)+SOS1(PRS,PRS!1).GRB2(SH3!1,SH2!+) <-> GRB2(SH3!2,SH2!+).SOS1(PRS!2,PRS!1).GRB2(SH3!1,SH2!+) kxgspsr,kxgsmsr
```

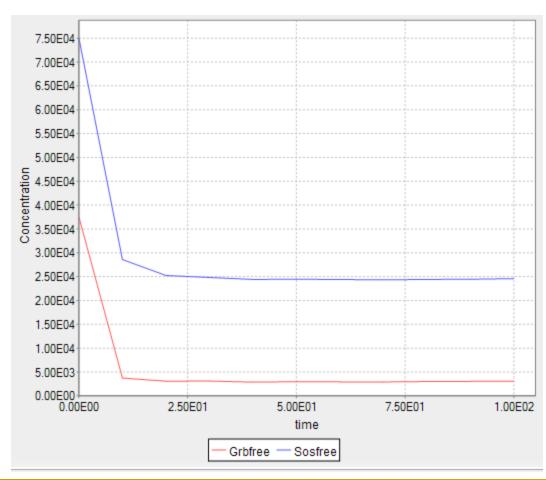
Rule-based Model for LAT

Binding of pLAT with GRB2 and SOS1

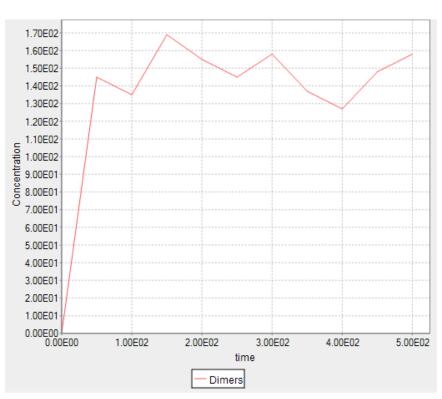
```
# 2a: LAT binds free GRB2
LAT(Y~P)+GRB2(SH2,SH3) <-> LAT(Y~P!1).GRB2(SH2!1,SH3) kglp,kglm

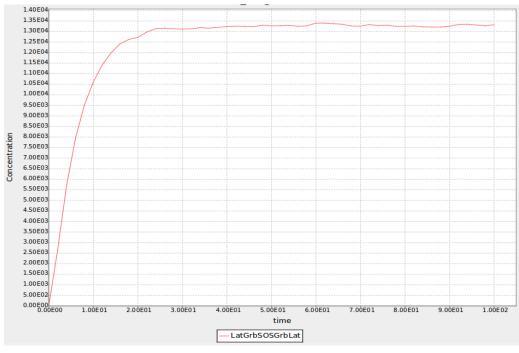

# 2b: monoLAT binds GRB2 bound to SOS1
LAT(Y~P)+GRB2(SH2,SH3!1).SOS1(PRS!1,PRS) <-> LAT(Y~P!2).GRB2(SH2!2,SH3!1).SOS1(PRS!1,PRS) kglp,kglm

# 2c: LAT binds membrane-associated GRB2
LAT(Y~P)+GRB2(SH2,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2,SH3!2) <-> LAT(Y~P!3).GRB2(SH2!3,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2,SH3!2) kglp,kglm

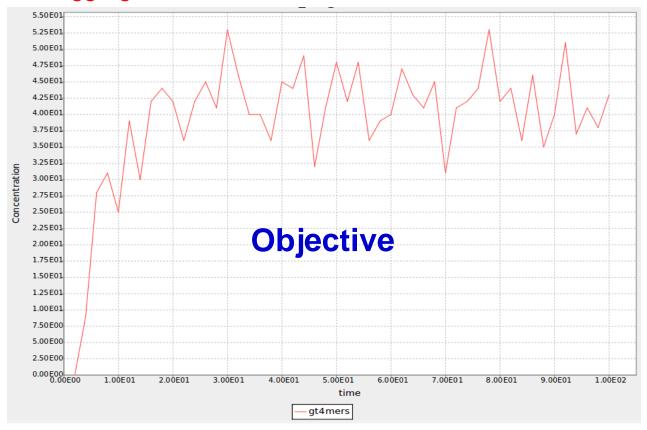

# 2d: LAT binds membrane-associated GRB2
LAT(Y~P)+GRB2(SH2,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2!3,SH3!2).LAT(Y~P!3).GRB2(SH2!3,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2;3,SH3!2).LAT(Y~P!3) kglp,kglm

# 2d: LAT binds membrane-associated GRB2
LAT(Y~P)+GRB2(SH2,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2!3,SH3!2).LAT(Y~P!3) <-> LAT(Y~P!4).GRB2(SH2!4,SH3!1).SOS1(PRS!1,PRS!2).GRB2(SH2!3,SH3!2).LAT(Y~P!3) kglp,kglm
```


Species LATfree (LAT(Y~U,Y~U,Y~U))



- Species GRB2free (GRB2(SH2,SH3))
- Species SOS1free (SOS1(PRS,PRS))


Aggregate with two LAT molecules

Source code taken from (http://public.tgen.org/dynstoc/download/models/lat.bngl, DYNSTOC: a tool for simulating large-scale rule-based models)

Aggregate with more than four LAT molecules

Source code taken from

(http://public.tgen.org/dynstoc/download/models/lat.bngl,

DYNSTOC: a tool for simulating large-scale rule-based models)

Conclusion

- •Rule-based modeling allows the formalization of mechanistic hypothesis.
- •A useful mechanistic modeling based on local interactions.
- •Allows the construction of abstract models that can be gradually refined.
- •Currently, we have achieved to produce LAT aggregates with only two LAT molecules.
- •If phosphorylation code, and aggregation code are run separately, the produce results that verifies the hypothesis of LAT phosphorylation and aggregation respectively.

Thanks

Dr. William S. Hlavacek

Los Alamos National Laboratory and University of New Mexico

Dr. James R. Faeder

University of Pittsburgh School of Medicine

- The rest of the qbio 2 group
- Qbio Summer School, organizers and sponsors
- I2CAM support (NSF grant number DMR-0844115)