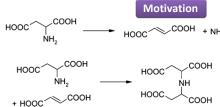
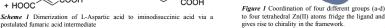
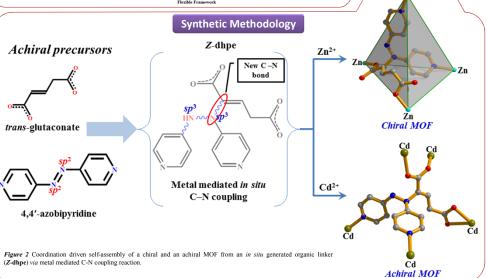

Coordination Driven Axial Chirality in a Microporous Solid Assembled from an Achiral Linker via In Situ C-N Coupling

Prakash Kanoo, a Ritesh Haldar, b Soumya T. Cyriaca and Tapas Kumar Maji *a,b

^aMolecular Materials Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India


^bNew Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India





What is special about Metal Organic Frameworks (MOFs)?

- > Enormous choice of metals and
- Very regular and tunable channels
- > High surface area materials
- Light weight materials
- Wide range of applicability
- Increased interest in chemical versatility

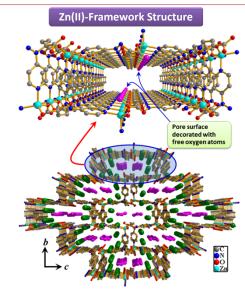
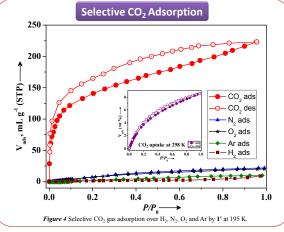
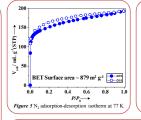




Figure 3 View of the 3D framework of 1 along a direction. The channels are occupied by guest water (green balls) and ethanol (pink color) molecules.

Samples	Space group	a (Å)	b (Å)	c (Å)	R	$R_{ m w}$	Flack
Crystal 1	P2 ₁ 2 ₁ 2 ₁	8.741(5)	14.796(5)	19.340(5)	0.086	0.2689	0.00(3)
Crystal 1a	P2 ₁ 2 ₁ 2 ₁	8.7423(6)	14.7183(11)	19.3742(15)	0.0843	0.2300	0.01(6)
Crystal 1b	P2 ₁ 2 ₁ 2 ₁	8.7726(4)	14.7582(9)	19.3159(10)	0.0797	0.2428	0.02(4)
Crystal 1c*	P2 ₁ 2 ₁ 2 ₁	8.7611(8)	14.7839(16)	19.353(2)	0.0811	0.2286	0.05(5)
Crystal 1d*	P2 ₁ 2 ₁ 2 ₁	8.7562(6)	14.8244(11)	19.3329(14)	0.0798	0.2285	-0.01(5)
Crystals with and without *mark have opposite handedness.							

Conclusions

- ☐ We show that Zn(II) mediates in situ C-N coupling reaction during construction of a MOF.
- ☐ The unusual distorted tetrahedral geometry of the newly in situ formed ligand, with a Z-configuration, and its asymmetric coordination with Zn(II) directs the structure in all the three crystallographic axes to generate a chiral 3D framework structure.
- $\ \square$ The chirality in compound 1 is of axial type and is completely coordination driven.
- ☐ The microporous nature of the framework has been established by gas adsorption studies. More interestingly, the compound shows selective adsorption of CO₂ gas over H₂, N₂, O₂ and Ar at 195 K.

Acknowledgement: Financial supports from ICAM-12CAM, 1 Shields Avenue, Davis, CA 95616 (NSF Grant Number DMR-0844115) and Council of Scientific and Industrial Research, Govt. of India are highly acknowledged. Reference: Prakash Kanoo, Ritesh Haldar, Soumya T. Cyriac and Tapas Kumar Maji, Submitted, 2011.

