Physical Characterization of Functionalized Spider Silk: Electronic and Sensing Properties

Collaborator:

- Jin Gyu Park
- Anant Paravastu
- Elsa B. Lopes
- Ongi Englander
- Theo Siegrist
- Papatya Kaner
- Rufina G Alamo

Eden Steven

Department of Physics

National High Magnetic Field Laboratory at Florida State University

Supervisor: Prof. James S. Brooks

NSF - DMR - 0844115

E. Steven, et al. Sci. Technol. Adv. Mater. 12, 055002 (2011)

Trends in spider silk research

As substrate for implantable devices

Dyed-silkworm for intrinsically colored silk. Added functionality: anticoagulant, anti-inflammatory

Modified goat for massproduction of spider silk. Bulletproof skin.

☐ As gate dielectric for flexible OTFT (pentacene)

Novel approach to electronic circuits. Woven electrochemical transistors on silk fibers

[4]

[1] D.H. Kim, et al. APL **95**, 133701 (2009) [2] C.H. Wang, et al. Adv. Mater. **23**, 1630 (2011)

[3] N.C. Tansil, et al. Adv. Mater. **23**, 1463 (2011) [4] C. Muller, et al. Adv. Mater. **23**, 898 (2011)

Motivation and outline

- Lack of electronic characterization of spider silk in literature.
- Application in unconventional areas.

Mechanical properties

Protein structure

GQG GYG GLG SQG A GRG GLG GQG A

A GA₇G₂ A

Spidroin 2

(GPGGY GPGQQ)₃ GPSGPGS A₁₀

Silk	Spidroin 1	Spidroin 2	
Dragline	++++	++	
Viscid	-	++	

Spider silk used in this work

Amino acids present in spider silk

J.D. van Beek, et al. PNAS, 99, 10266 (2002)

Humidity dependent conductivity of neat spider silk

Effect of I₂-doping of spider silk: slight conductivity improvement

Procedure:

- Light I₂ doping: 25 C for 24 H. Then vacuum for 12 H. Original color restored after vacuum.
- Heavy I₂ doping: 70 C for 3 H. Then vacuum for 12 H. Color changed to deep-brown color permanently.
- □ Under ambient RH, conductivity increases ~ 600% for lightly I₂ doped sample.
- □ No additional conductivity increase for heavily I₂ doped sample.
- The cyclic response of neat silk is nearly reversible but I₂ doping caused more water retention resulting a hysteretic behavior.

Effect of I_2 -doping of spider silk: improved structure and carbon yield after pryolization

SEM analysis of pyrolized spider silk

Increased carbon yield of 7% for heavily I₂ doped sample.

Less disintegration and more flexible.

Effect of I_2 -doping of spider silk: MAS-NMR and FTIR

- ☐ Light I₂ doping only minimally introduces I₂ into amorphous region.
- Heavy I₂ doping introduces I₂ into both the amorphous and crystalline region.

FTIR of I₂ doped silk

- No observable difference in FTIR spectra after light I₂ doping.
- Heavy I₂ doping reduces b-sheet peak and increases α-helix peak, indicating partial destabilization of some β-sheet into amorphous helices constituents.
- No C-I chemical reaction is observed. Diffusion process is more likely.

Qualitative Model of I₂-Silk Interaction

- ☐ Higher carbon yield: At 200 C, HI gas is produced → radicals generated → polymerization process accelerated → molecular weights of the components increased →higher amount of carbon is retained upon pyrolization.
- ☐ Better structure: Trapped iodine effectively change the interchain hydrogen bonding into iodine complexes that favor interchain van der Waals C-C interaction upon pyrolization.
- ☐ Minimal conductivity improvement: Only amorphous region is doped. The insulating b-sheet region limits the overall conductivity improvement.

Gold sputtered spider silk

E. Steven, et al. Sci. Technol. Adv. Mater 12, 055002 (2011)

Electrical junctions

Gold sputtered silk cross junction

- □ The gold-sputtered silk fibers remained elastic.
- ☐ Robust crossjunctions under tension could be formed.
- ☐ In principle, for junctions involving p- and n-type coating, diode characteristics should be possible.

Flexible and clean electrodes

"Mandolin" configuration for transport characterization

- Flexible and clean pressure contact.
- Securing the silk fibers onto a G10 using Stycast 2850 is very important to prevent slipping.
- □ Robust down to ~4.3 K.
- Lower contact resistance at lower temperature.

 κ -(BEDT-TTF)₂Cu[N(CN)₂]Br

E. Steven, et al. Sci. Technol. Adv. Mater 12, 055002 (2011)

Future work: Carbon nanotube coated/doped spider silk

Fairly uniform CNT-coating by dip-coating method.

ΔR of ~ 100% can be reached initially. However, after multiple mount/peel-off cycle, the sensitivity is reduced. More work is needed

to optimize the device.

Conclusion

- An excellent scaffolding for adding functions: biocompatible, air stable, flexible, strong.
- Good affinity/compatibility to many kind of nanoparticles or nanomaterials: gold particles, pentacene, carbon nanotubes, and many others.
- Complex chemistry of protein polymer gives wide possibility for tuning the biochemical/physical properties.
- □ Robust properties under ambient conditions.
- ☐ Challenge: High yield and high performance synthetic silk.

Conclusion

- An excellent scaffolding for adding functions: biocompatible, air stable, flexible, strong.
- ☐ Good affinity/compatibility to many kind of nanoparticles or nanomaterials: gold particles, pentacene, carbon nanotubes, and many others.
- Complex chemistry of protein polymer gives wide possibility for tuning the biochemical/physical properties.
- □ Robust properties under ambient conditions.
- ☐ Challenge: High yield and high performance synthetic silk.

Thank you

Appendix

MAS-NMR of dry vs wet neat spider silk

- Hydration decreases intensity of most peaks except Ala C_{α} and Ala C_{β} (β-sheet) which is located in the β-sheet blocks.
- ☐ Thought to be due to increasing mobility of the protein backbone and side-chain mobility with hydration [REF].
- □ Intensitiy drop is largest for Gly followed by Glx, Ser and Pro peaks.
- May suggests a sequential water absorbing mechanism which could be related to the observed activated behavior.

Mechanical properties

Although not as extensible as rubber and not as strong as Kevlar 49, spider silk is considered the **toughest** materials.

Material	Stiffness (GPa)	Strength (GPa)	Extensibility (%)	Toughness (MJ m ⁻³)
Spider dragline silk	10	1.1	27	160
Spider viscid silk	0.003	0.5	270	150
Synthetic rubber	0.001	0.05	850	100
Kevlar 49	130	3.6	2.7	50

Thermoelectric and incandescence of pyrolized spider silk

Thermoelectricity of pyrolized spider silk

- Pyrolized silk is a p-type semiconductor.
- The incandescence appeared to be conventional blackbody radiation.

Incandescence of pyrolized spider silk

Humidity dependent conductivity of neat spider silk

Highly insulating: $\sigma = 44$ nS cm-1 (at 50% RH).

 H_2^0

- Slight non-linearity in the I-V curve at lower voltages.
- Humidity activated behavior: $\sigma = \sigma_0 \exp(0.23RH)$